Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные положения протолитической теории кислот и оснований Бренстеда-Лоури. Теория Льюиса




Теория Бренстеда-Лоури:кислотой называют всякое вещество, молекулярные частицы которого(в том числе и ионы) способны отдавать протон, т.е. быть донором протонов; основанием называют всякое вещество, молекулярные частицы которого(в том числе и ионы) способны присоединить протоны, т.е. быть акцептором протонов. Например: HNO3 + H2O= H3O+ + NO3-

Молекула и ион, отличающиеся по составу на один протон, называются сопряженной кислотно-основной парой. Частицы, способные к взаимодействию как с кислотами, так и с основаниями, называются амфолитами.

Теория Льюиса: кислотой называют вещество, принимающие электронные пары, - акцептор электронов; основанием называют вещество, поставляющее электроны для образования химической связи, - донор электронов. Например: NH3 + HCI=NH4CI

14. Автопротолиз –обратимый процесс образования равного числа катионов и анионов из незаряженных молекул жидкого индивидуального вещества за счет передачи протона от одной молекулы к другой. H2O + H2O= H3O+ + OH–. Это равновесие называется равновесием автопротолиза воды. Константа автопротолиза для воды обычно называется ионным произведением воды и обозначается как Kw. Ионное произведение численно равно произведению равновесных концентраций ионов гидроксония и гидроксид-анионов. Обычно используется упрощенная запись:

При стандартных условиях ионное произведение воды равно 10-14. Оно является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. Автопротолиз воды объясняет, почему чистая вода, хоть и плохо, но всё же проводит электрический ток. pH — это водородный показатель— мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм концентрации водородных ионов, выраженной в молях на литр: pH = -log[H+]. Т.е. рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. (Моль — единица измерения количества вещества.) Если в воде пониженное содержание свободных ионов водорода [H+] (рН > 7) по сравнению с ионами гидроксида [ОН-], то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН < 7) - кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга и в нейтральной воде рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению значения рН. Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. 15. Типы протолитических реакций. К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием - вещество, способное присоединять протон, например:

CH3COOH + H2O = CH3COO- + H3O+

кислотаI основаниеI основаниеI кислотаII

NH3 + H2O = NH4+ + OH-

основаниеIкислотаII кислотаII основаниеI К протолитическим реакциям относят реакции нейтрализации и гидролиза.

Реакция 1 типа уксусная кислота с водой: протекающая в прямом направлении,представляет ионизацию уксксной кислот,в обратном направлении-нейтрализацию какого –либо ацетета.Реакция 2 типа NH4 +H2O=NH3+H3O протекает в прямом направлении показывает гидролиз какой-либо соли аммония ,а в обратном направлении-нейтрализацию аммиака РеакциИ 3типа имеют место не только в воде но ив других растворителях например в жидком аммиаке.

Гидро́лиз— один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия. гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ выделяется энергия, обеспечивающая нужды клетки.При гидролизе солей вода является источником протонов и электронов. Алкалиметрия и ацидиметрия — важнейшие титриметрические методы определения кислот или же оснований, основанные на реакции нейтрализации:Н+ + ОН− = Н2ОТитрование раствором щелочи называется алкалиметрией, а титрование раствором кислоты — ацидиметрией 16.Буферные системы; их классификация и механизм действия. Буферная емкость. Кислотно-основный баланс.

Кислотно-основными буферными растворами называются растворы, обладающие способностью сохранять постоянство рН среды при разбавлении, а также при доюавлении небольших количеств сильной кислоты или щелочи.

Мерой буферного действия, количественно характеризующей способность буферных систем противодействовать смещению активной реакции среды, является буферная емкость(В). Буферная емкость равна числу молей эквивалента сильной кислоты или сильного основания, которое нужно добавить к 1л буф.раствора, чтобы рН изменился на единицу.

Смещение значения рН крови в менее щелочную область значений называется ацидозом, а в более щелочную область- алкалозом.

17. Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул способных к самостоятельному существованию в растворе.

По координационной теории Вернера в каждом комплексном соединении различают внутреннюю и внешнюю сферу. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса. Ее обычно заключают в квадратные скобки. Все остальное в комплексном соединении составляет внешнюю сферу и пишется за квадратными скобками. Вокруг центрального атома размещается определенное число лигандов, которое определяется координационным числом (кч). Число координированных лигандов чаще всего равно 6 или 4. Лиганд занимает около центрального атома координационное место. При координации изменяются свойства как лигандов, так и центрального атома. Более прочно связанные частицы внутренней сферы называются комплексом (комплексным ионом). Между центральным атомом и лигандами действуют силы притяжения (образуется ковалентная связь по обменному и (или) донорно–акцепторному механизму), между лигандами – силы отталкивания. Если заряд внутренней сферы равен 0, то внешняя координационная сфера отсутствует.

Центральный атом (комплексообразователь) – атом или ион, который занимает центральное положение в комплексном соединении. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразователи – элементы IВ и VIIIВ групп. Редко в качестве комплексообразователей выступают нейтральные атомы d–элементов [Fe(CO)5] и атомы неметаллов в различной степени окисления [PF6]—. Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона комплексообразователя: Лиганды – ионы или молекулы, которые непосредственно связаны с комплексообразователем и являются донорами электронных пар. Это электроноизбыточные системы, имеющие свободные и подвижные электронные пары, могут быть донорами электронов, например:

Cl— ¯; F—¯; ОН—¯; CN—¯; CNS—¯; Н2О¯; NH 3¯; СО¯.

Число мест, занимаемых каждым лигандом во внутренней сфере комплексного соединения называется координационной емкостью (дентатностью) лиганда. Она определяется числом электронных пар лиганда, которые участвуют в образовании координационной связи с центральным атомом.

Соединения р–элементов проявляют комплексообразующие свойства и выступают в комплексном соединении в качестве лигандов. Лигандами могут быть атомы и молекулы (белка, аминокислот, нуклеиновых кислот, углеводов). По числу связей, образуемых лигандами с комплексообразователем, лиганды делятся на моно-, би- и полидентатные лиганды. Вышеперечисленные лиганды – молекулы и анионы являются монодентатными, так как они доноры одной электронной пары. К бидентатным лигандам относятся молекулы или ионы, содержащие две функциональные группы, способные быть донором двух электронных пар( – ООС — СОО –). К полидентатные лигандам можно отнести 6–дентатный лиганд этилендиаминтетрауксусной кислоты.

 

18. Пространственное строение комплексных соединений. Классы комплексных соединений. Пространственное строение комплекса определяется типом гибридизации атомных орбиталей центрального атома. Комплексные соединения с координационным числом 2 встречаются редко(sp-гибридизация).пример:[Ag(NH3)2]+. Наиболее распространены комплексы с координационными числами 4 и 6. Для описания геометрии комплексных соединений пользуются понятием координационных полиэдров(многогранник.вершинами которого служат лиганды, связанные с центральным атомом-комплексообразователем. Комплексы с координационным числом 4 могут быть как тетраэдрическими(sp3-гибридизация)пример:[Zn(NH3)4]2+ , так и плоскоквадратными(dsp2-гибридизация)пример:[Pt(NH3)4]2+. Комплексы с координационным числом 6 имеют октаэдрическую конфигурацию(d2sp3-гибридизация).Пример:[Ni(NH3)6]3+. Реже встречаются комплексы с координационным числом 5(dsp3-гибридизация). Они образуют тригональную бипирамиду(пример:[CdCI5]3-) или квадратную пирамиду.( пример:[Ni(CN)5]3-). Координационному числу 12(очень редко) соответствует икосаэдр.

Классы комплексных соединений: 1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.). [(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II)
[Co(NH3)6]Cl3 — хлорид гексоамминкобальта(II) 2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы. K2[BeF4] — тетрафторобериллат(II) калия Li[AlH4] — тетрагидридоалюминат(III) лития
K3[Fe(CN)6] — гексацианоферрат(III) калия 3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а так же при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул. [Ni(CO)4] — тетракарбонилникель
[Pt(NH3)2Cl2] — дихлородиамминплатина(II) 4)Внутрикомплексныеклешневидные соединения, хелатные соединения. Классический пример— гликоколят меди

Комплексоны, их применение в медицине. Ионные равновесия в растворах комплексных соединений. Константа нестойкости комплексного иона. Сложные органические лиганды. Представление о строении металлоферментов. Механизм токсического действия тяжёлых металлов на основе ЖМКО.

Комплексоны - аминополикарбоновые кислоты и их производные, применяемые в методе комплексонометрии, а также для умягчения воды и др. технических целей. В аналитической практике используют нитрилотриуксусную кислоту N (CH2COOH)3 — комплексон I и двунатриевую соль этой кислоты — комплексон III, или трилон Б.

Вещества, устраняющие последствия воздействия ядов на биологические структуры и инактивирующие яды, посредством химических реакций, называют антидотами.

(Na3 СаДТПА) – пентацини (NaCa2 ДТПФ) – тримефацин. Их применяют при острых и хронических отравлениях свинцом, радионуклидами, алюминием, цинком, церием и др, (Na2СаЭДТФ) фосфицин успешно используется для выведения из организма ртути, свинца, берилия, марганца, актиноидов и других металлов.

В водных растворах комплексных соединений устанавливается равновесие, которое характеризуется константой устойчивости (Куст.) или величиной, обратной ей, константой нестойкости (Кн). Пользуясь величиной соответствующей константы, необходимо уметь рассчитывать равновесные концентрации ионов в растворе комплексных соединений в присутствии избытка лиганда и без избытка лиганда.

константа равновесия - константа нестойкости комплексного иона [Ag(NH3)2]+:

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости.

У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа. Она называется лиганд, то есть молекула, связанная с белком.

В роли лиганда могут выступать любые молекулы:

молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине,

переносимые белками молекулы: железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине,

субстраты для ферментов – любые молекулы и даже другие белки.

Металлоферменты — ферментоы, для функционирования которых необходимо присутствие катионов тех или иных металлов. В подобном ферменте могут присутствовать несколько различных ионов металла. Катион металла при этом обеспечивает правильную пространственную конфигурацию активного центра металлофермента.

Примерами металлоферментов являются карбоксипептидаза, карбоангидраза, или селен-зависимая монодейодиназа, конвертирующая тироксин в трийодтиронин

ЖМКО

Мягкие кислоты предпочтительней координируют мягкие основания, а жёсткие – жёсткие. Таким образом, ионы ртути, свинца, таллия (мягкие кислоты) имеют большее сродство к серосодержащим лигандам, а ионы магния, кальция (жёсткие) – к кислород- и азотсодержащим лигандам.

Понятие биогенности химических элементов. Биосфера, круговорот биогенных элементов. Классификация биогенных элементов по их функциональной роли: органогены, элементы электролитного фона, микроэлементы, ксенобиотики. Окружающая среда: химические аспекты экологии.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами.

Часть земной оболочки, занятой растительными и животными организмами и переработанная ими и космическими излучениями и приспособленная к жизни, называют биосферой

Концентрация элементов в живом веществе прямо пропорциональна его содержанию в среде обитания с учетом растворимости их соединений. Химический состав организма определяется составом окружающей среды. Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Пути поступления элементов в организм разнообразны. Согласно биогеохимической теории Вернадского существует «биогенная миграция атомов» по цепочке воздух> почва®вода®пища®человек, в результате которой практически все элементы, окружающие человека во внешней среде, в большей или меньшей степени проникают внутрь организма.

Для 30 элементов биогенность установлена.

Классификация биогенных элементов по их функциональной роли:

1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов (переходные металлы).

Ксенобиотики- чужеродные для организмов химические вещества, естественно не входящие в биотический круговорот и прямо или косвенно порожденные хозяйственной деятельностью человека.

21. Химия элементов s блока.К s-элементам относятся две группы Периодической системы: IА и IIА. В группу IА входят 8 элементов: литий, калий, натрий, рубидий, цезий, франций, водород, гелий. В группу IIА входят 6 элементов: бериллий, магний, кальций, стронций, барий, радий Общая характеристика элементов IА и IIА. Элементные вещества - типичные металлы, обладающие блеском, высокой электрической проводимостью и теплоповодимостью, химически весьма активны.s-элементы IА и IIА имеют относительно большие радиусы атомов и ионов. s-элементы IА и IIА групп легко отдают валентные электроны. Являются сильными восстановителями. С ростом радиуса атома в группах IА и IIА ослабевает связь валентных электронов с ядром, следовательно s-элементы этих групп имеют низкие значения Еи и Еср..сильных восстановителей. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз. Для элементов IIА группы характерна большая, чем для элементов IА группы способность к комплексообразованию. s-элементы IА и IIА образуют соединения с ионным типом связи. Исключение составляет водород, для которого в соединениях даже с самыми электроотрицательными элементами характерна преимущественно ковалентная связь (например, фтороводород или вода.Сравнение свойств элементов IА и IIА (комплексообразование, образование осадков) на примере Na, K и Mg, Ca Атомы элементов IА группы имеют по одному валентному электрону на s подуровне внешнего энергетического уровня. Это обуславливает проявление степени окисления +1 Химическая активность металлов IА группы возрастает закономерно с увеличением радиуса атома и уменьшением их способности к гидратированию (чем меньше способность к гидратированию, тем активнее металл). Так как радиус атома калия больше, чем радиус атома натрия, то способность к гидратации для катиона калия будет ниже, чем для катиона натрия, а, следовательно, химическая активность катиона калия выше, чем у катиона натрия. Вследствие незначительного поляризующего действия (устойчивая электронная структура, большие размеры, малый заряд ядра) комплексообразование для ионов щелочных металлов малохарактерно. Вместе с тем, они способны образовывать комплексные соединения с некоторыми биолигандами (КЧ для натрия и калия может принимать значения 4 и 6). Способность образовывать донорно-акцепторные связи с соответствующими лигандами едва намечается у натрия. У калия имеется значительная тенденция к использованию имеющихся в атоме вакантных d-орбиталей. Большинство солей щелочных металлов хорошо растворимы в воде (исключение составляют некоторые соли лития). Степени окисления больше +2 элементы IIА группы не проявляют. Несмотря на то, что число валентных s электронов у атомов IIА группы одинаково, свойства магния и кальция отличаются друг от друга. Это связанно с тем, что в атоме кальция, в отличие от атома магния, имеются свободные d-орбитали, близкие по энергии к ns орбиталям. Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвуют в поддержании постоянного осмотического давления биожидкости (осмотического гомеостаза) Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов.. Ионы калия играют важную роль в физиологических процессах - сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях. Являются важными активаторами внутриклеточных ферментов. Формально магний относится к макроэлементам. В наибольшей степени магний концентрируется в дентине и эмали зубов, костной ткани. Накапливается в поджелудочной железе,скелетных мышцах. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови. Химическое сходство и биологический антагонизм натрия, калия, кальция и магния.Сходство электронного строения ионов щелочных (натрий и калий) и щелочноземельных (магний и кальций) металлов и различия физико-химических характеристик определяет их действия на биологические процессы.Натрий и калий являются антагонистами. В ряде случаев близость многих физико-химических свойств обусловливает их взаимозамещение в живых организмах. Например, при увеличении количества натрия в организме усиливается выведение калия почками, наступает гипокалиемия.Магний и кальций являются антагонистами. Ионы кальция подавляют активность многих ферментов, активизируемых ионами магния. Антагонизм ионов кальция и магния проявляется еще и в том, что ион кальция является внеклеточным ионом. При длительном поступлении в организм избыточных количеств солей магния наблюдается усиленное выделение кальция из костной ткани.

22. К d-блоку относятся 32 элемента периодической системы.Они расположены в побочных подгруппах периодической системы в 4-7 больших периодах между s- и p-элементами. (Sc Ti V Cr Mn Fe Co Cu Zn)

Характерной особенностью элементов d-блока является то, что в их атомах последними заполняются орбитали не внешнего слоя (как у s- и p-элементов), а предвнешнего [(n - 1)d] слоя. В связи с этим, у d-элементов валентными являются энергетически близкие девять орбиталей – одна ns-орбиталь, три nр-орбитали внешнего и пять (n - 1)d-орбиталей предвнешнего энергетического уровней:

Элементы d-блока находящиеся в III, IV, V, VI, VII B группах имеют незавершенный d-электронный слой (предвнешний эн. уровень). Такие электронные оболочки неустойчивы. Этим объясняется переменная валентность и возможность проявлять различные степени окисления d-элементов. Степени окисления элементов d-блока в соединениях всегда только положительные.

Соединения с высшей степенью окисления проявляют кислотные и окислительные свойства (в растворах представлены кислородсодержащими анионами). Соединения с низшей степенью окисления – основные и восстановительные свойства (в растворах представлены катионами). Соединения с промежуточной степенью окисления – проявляют амфотерные свойства.

Например:CrO основной оксид, Cr2O3 – амфотерный оксид, CrO3 – кислотный оксид.







Дата добавления: 2015-04-19; просмотров: 2918. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.022 сек.) русская версия | украинская версия