Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения задач




Пример 14.1.Определите ЭДС концентрационного серебряного элемента с концентрациями ионов серебра, равными 10–1 моль/л у одного электрода и 10–4 моль/л у другого при 298 К.

Решение.Схема такого гальванического элемента Ag½Ag+||Ag+½Ag. По уравнению Нернста рассчитываем потенциалы двух серебряных электродов.

Для первого электрода:

jAg+/Ag = j0Ag+/Ag + 0,059 lg10-1 = 0,799 + 0,059×(–1) = 0,74 В

Для второго электрода:

jAg+/Ag = j0Ag+/Ag + 0,059 lg10-4 = 0,799 + 0,059×(–4) = 0,563 В

Первый электрод с большим значением потенциала в данном элементе является катодом, второй – анодом. ЭДС рассчитываем по формуле:

E = jк – jа = 0,74 – 0,563 = 0,177 В.

Пример 14.2. Рассчитайте ЭДС элемента Cd½Cd2+||Ni2+½Ni при концентрации ионов Cd2+ и Ni2+, равных соответственно 0,1 и 0,001 моль/л.

Решение.Используя уравнения Нернста и данные табл. 14.1, рассчитываем электродные потенциалы кадмия и никеля:

jСd2+/Cd = j0Сd2+/Cd + lg10-3 = -0,403 + 0,0295×(-3) = -0,4915 В

jNi2+/Ni = j0Ni2+/Ni + lg10-1 = -0,250 + 0,0295×(-1) = - 0,2795 В

Так как jСd2+/Cd < jNi2+/Ni , то токообразующей в этом гальваническом элементе является реакция Cd0 + Ni2+ = Cd2+ + Ni0. Рассчитываем ЭДС элемента

E = jNi2+/Ni – jСd2+/Cd = -0,2795 - (-0,4915 ) = 0,212 В.

Пример 14.3. Исходя из значений стандартных электродных потенциалов и DG0х.р., укажите, можно ли в гальваническом элементе осуществить реакцию Pb2+ + Ti = Pb + Ti2+. Составьте схему гальванического элемента, напишите уравнения электродных реакций.

Решение. В соответствии с уравнением реакции схему гальванического элемента можно представить следующим образом: (–)Ti½Ti2+||Pb2+½Pb(+). Уравнения электродных реакций имеют вид:

на аноде: Ti0 – 2ē ® Ti2+

на катоде: Pb2++ 2ē ® Pb0

Рассчитываем стандартное значение ЭДС:

E 0 = j0к – j0а = j0Pb2+/Pb – j0Ti2+/Ti = –0,126 – (–1,628) = 1,502 B.

Энергию Гиббса рассчитываем по уравнению DG0 = – nE0F= – 2×1,502×96500 = –289,9 кДж. Так как DG0 < 0, токообразующая реакция возможна.

Пример 4.4. Как изменится масса цинковой пластинки при взаимодействии ее с растворами: а) CuSO4; б) MgSO4; в) Pb(NO3)2? Почему? Составьте молекулярные и ионные уравнения соответствующих реакций.

Решение. В соответствии со значениями стандартных электродных потенциалов (табл. 14.1) ионы меди и свинца по отношению к цинку будут проявлять окислительную активность. При контакте с растворами CuSO4 и Pb(NO3)2 будут протекать реакции растворения цинка и осаждения соответствующего металла:

а) CuSO4 + Zn = Cu + ZnSO4; Cu2+ + Zn = Cu + Zn2+

б) Pb(NO3)2 + Zn = Pb + Zn(NO3)2; Pb2+ + Zn = Pb + Zn2+

Один моль эквивалентов цинка (32,69 г/моль) будет замещаться на один моль эквивалентов меди (31,77 г/моль) или свинца (103,6 г/моль). Учитывая молярные массы эквивалентов этих элементов, в растворе CuSO4 масса цинковой пластины будет незначительно уменьшаться, а в растворе Pb(NO3)2 – заметно увеличиваться.

Стандартный потенциал магния имеет меньшее значение, чем потенциал цинка (табл. 14.1). Это означает, что ионы магния не могут окислять цинковую пластинку. Поведение цинка в таком растворе аналогично окислению цинковой пластинки в воде: Zn – 2ē = Zn2+. Протекание такого процесса приведет к малозаметному снижению массы цинковой пластинки.

 

Задачи

261. Чему равна величина ЭДС гальванического элемента, составленного из стандартных цинкового и серебряного электродов, погруженных в растворы их солей? Приведите схему гальванического элемента и реакции, протекающие на электродах при его работе. (Ответ: 1,562 В).

262. Чему равна величина ЭДС цинкового концентрационного элемента, составленного из двух цинковых электродов, опущенных в растворы с концентрациями ионов Zn2+, равными 10–2 и 10–6 моль/л? Приведите схему такого элемента и реакции, протекающие на электродах при его работе. (Ответ: 0,118 В).

263. Имеется гальванический элемент, в котором протекает реакция Ni + Cu2+ = Cu + Ni2+. Составьте схему такого элемента, уравнения электродных процессов и определите, как изменяется величина ЭДС при: а) увеличении концентрации ионов Cu2+; б) увеличении концентрации ионов Ni2+? Ответ обоснуйте.

264. Составьте схему, напишите уравнения токообразующей и электродных реакций для гальванического элемента, у которого один из электродов – кобальтовый (СCо2+ = 10–1 моль/л), а другой – стандартный водородный. Рассчитайте ЭДС элемента при 298 К. Как изменится ЭДС, если концентрация ионов Со2+ уменьшить в 10 раз? (Ответ: 0,307 В; 0,336 В).

265.Каково значение ЭДС элемента, состоящего из медного и свинцового электродов, погруженных в растворы солей этих металлов с концентрациями их ионов 1 моль/л? Изменится или нет ЭДС этого элемента и почему, если концентрации ионов металлов будут составлять 0.001 моль/л? Составьте уравнения электродных и токообразующей реакций. Приведите схему гальванического элемента. (Ответ: 0,463 В).

266.Составьте схему, приведите уравнения электродных процессов и вычислите ЭДС концентрационного гальванического элемента, состоящего из медных электродов, опущенных в растворы Сu(SO4)2 с концентрациями 0,01 и 0,1 моль/л. (Ответ: 0,0295 В).

267.После нахождения в растворах каких из приведенных солей масса кадмиевой пластинки увеличится или уменьшится: а) MgCl2; б) Hg(NO3)2; в) CuSO4; г) AgNO3; д) CaCl2? Ответ обоснуйте.

268. Составьте схему, приведите уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, которые опущены в растворы своих солей с концентрацией ионов Pb2+ и Mg2+, равных 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить в 100 раз? Ответ обоснуйте. (Ответ: 2,237 В).

269.В два сосуда с голубым раствором сульфата меди поместили в первый хромовую пластинку, а во второй платиновую. В каком сосуде цвет раствора постепенно исчезает? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

270.Составьте схемы двух гальванических элементов, в одном из которых оловянная пластинка была бы катодом, а в другом анодом. Напишите для каждого из этих элементов уравнения электродных (катодных и анодных) процессов и токообразующих реакций.

271. Составьте схему гальванического элемента, в основе работы которого лежит реакция: Ni + Pb(NO3)2 = Ni(NO3)2 + Pb. Напишите уравнения электродных (катодных и анодных) процессов. Вычислите ЭДС этого элемента, если СNi2+ = 0,01 моль/л, а СPb2+ = 0,0001 моль/л. (Ответ: 0,065 В).

272. Вычислите электродный потенциал цинка в растворе ZnCl2, в котором концентрация Zn2+ составляет 0,1 моль/л. Как изменится значение потенциала при разбавлении раствора в 100 раз? (Ответ: –0,79 В; –0,85 В).

273. Составьте схему гальванического элемента, электродами в котором служат пластинки из олова и меди. Исходя из величин стандартных электродных потенциалов, рассчитайте значения Е0 и DG0. Определите направление протекания токообразующей реакции. (Ответ: 0,473 В; –91,3 кДж).

274. Составьте схему гальванического элемента, образованного железом и свинцом, погруженными в растворы их солей с концентрациями ионов металлов 0,01 моль/л. Рассчитайте ЭДС. (Ответ: 0,314 В).

275. Исходя из величин стандартных электродных потенциалов, рассчитайте значения ЭДС и DG0 и определите, будет ли работать гальванический элемент, в котором на электродах протекают реакции:

Hg0 – 2ē = Hg2+ Pb2+ + 2ē = Pb0

(Ответ: –0,98 В; +189,1 кДж).

276. Исходя из величин стандартных электродных потенциалов, рассчитайте значения ЭДС и DG0 и сделайте вывод о возможности протекания реакции в прямом направлении: Cu + 2Ag+ Cu2+ + 2Ag. (Ответ: 0,462 В; –89,2 кДж).

277. Как изменится масса хромовой пластинки после нахождения в растворах солей: а) CuSO4; б) MgCl2; в) AgNO3; д) CaCl2? Ответ обоснуйте.

278. Составьте схемы двух гальванических элементов, в одном из которых цинк – отрицательный электрод, а в другом – положительный. Приведите уравнения токообразующих реакций и электродных процессов.

279. Электродные потенциалы железа и серебра соответственно равны –0,44 и +0,799 В. Какая реакция самопроизвольно протекает в железо-серебряном гальваническом элементе?

а) Fe0 + 2Ag+ = Fe2+ + 2Ag0; б) 2Ag0 + Fe2+ = Fe0 + 2Ag+

Ответ обоснуйте, рассчитав энергию Гиббса каждой из приведенных реакций.

280. Вычислите ЭДС гальванического элемента, состоящего из водородного электрода, опущенного в чистую воду, и оловянного электрода, опущенного в раствор с концентрацией ионов олова(II) 1 моль/л. (Ответ: 0,16 В).

 

15. Коррозия металлов

Коррозия это самопроизвольно протекающий процесс разрушения металлов в результате химического или электрохимического взаимодействия их с окружающей средой. По механизму протекания коррозионного процесса различают химическую и электрохимическую коррозию.

Химической коррозиейназывается окисление металла, не сопровождающееся возникновением в системе электрического тока. Такой механизм наблюдается при взаимодействии металлов с агрессивными газами при высокой температуре (газовая коррозия) и с органическими жидкими неэлектролитами (коррозия в неэлектролитах).

Электрохимической коррозиейназывается разрушение металла в среде электролита, сопровождающееся возникновением внутри системы электрического тока. Электрохимическая коррозия протекает по механизму действия гальванического элемента. На поверхности металла одновременно протекают два процесса: анодный – окисление металла М – nē ® Мn+

катодный – восстановление окислителя (Ох): Ох + nē® Red.

Наиболее распространенными окислителями при электрохимической коррозии являются молекулы О2 воздуха и ионы водорода Н+ электролита, восстановление которых на катоде протекают по уравнениям:

О2 + 2Н2О + 4ē ® 4ОН – в нейтральной или щелочной среде

+ + 2ē ® Н2 – в кислой среде.

Например, при контакте железа с медью в растворе электролита – соляной кислоты – на аноде идет процесс окисления железа: Fe – 2ē = Fe2+

на катоде – процесс восстановления ионов водорода: 2H+ + 2ē = H2

В результате железо разрушается, а на меди выделяется водород. Схема образующегося при этом гальванического элемента имеет вид:

(–) Fe½ Fe2+½HCl½H2½Cu (+)

При контакте железа с медью во влажном воздухе (O2 2O) процесс коррозии выражается уравнениями:

на аноде: Fe – 2ē = Fe2+

на катоде: O2 + 2Н2O +4ē = 4OH

Схема образующегося гальванического элемента:

(–) Fe½ Fe2+½ O2, Н2O ½OH½Cu (+)

Возникающие в результате коррозии ионы Fe2+ соединяются с гидроксильными группами, выделяющимися на катоде: Fe2 + 2OH= Fe(OH)2. Далее Fe(OH)2 окисляется в Fe(OH)3: 4Fe(OH)2 + O2 + 2Н2O = 4Fe(OH)3, который частично теряет воду и превращается в ржавчину.

Ионы или молекулы, которые восстанавливаются на катоде, называются деполяризаторами. Коррозия с участием ионов Н+ называется коррозией с водородной деполяризацией, а с участием молекул О2 – коррозией с кислородной деполяризацией. При атмосферной коррозии – коррозии во влажном воздухе при комнатной температуре – деполяризатором является кислород.

Одним из методов защиты металлов от коррозии является использование металлических покрытий. Различают катодные и анодные покрытия. Покрытие защищаемого металла менее активным металлом называется катодным. Катодными, например, являются покрытия на стали из меди, никеля, серебра. При повреждении таких покрытий защищаемый металл становится анодом и окисляется. Покрытие защищаемого металла более активным металлом называется анодным. Анодными, например, являются покрытия на стали из алюминия, цинка, хрома. В этом случае защищаемый металл будет катодом коррозионного элемента, поэтому он не корродирует, а окисляться будет металл покрытия.

Эффективным методом защиты от коррозии является протекторная защита. В этом методе к защищаемому металлу присоединяется лист, изготовленный из более активного металла. В результате защищаемое изделие становится катодом, а корродирует металл-протектор (анод).

 







Дата добавления: 2015-09-15; просмотров: 3233. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.008 сек.) русская версия | украинская версия