Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устройство и назначение измерительных трансформаторов тока и напряжения.

Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.

Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2

Устройство и принцип действия измерительных трансформаторов токоизмерительных приборов - классов 1 и 3:

Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток - первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле.

 

Рис. 1 - Трансформатор тока:

а - устройство, б, в - схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока

Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а-в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток, где KТТ - коэффициент трансформации; w1 и w2 - число витков первичной и вторичной обмоток.

Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов. Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка.

 

Рис. 2 – Трансформаторы тока на напряжение до 1000 В:

а - катушечный, б, в - шинные ТШ-0,5 и ТШЛ-0,5; 1 - каркас, 2, 4 - зажимы вторичной и первичной обмоток, 3 - защитный кожух, 5 - окно.

Рис. 3 - Трансформаторы тока на напряжение 10 кВ с литой изоляцией:

а - многовитковый ТПЛ-10, б - одновитковый ТПОЛ-10, в - шинный ТПШЛ-10; 1, 2 - зажимы первичной и вторичной обмоток, 3 - литая изоляция, 4 - установочный угольник, 5 - сердечник.

Рис. 4 - Опорный трансформатор тока ТФНД-220 наружной установки. Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (рис.3, а - в).

Рис. 5 - Трансформаторы тока:

а - проходной ТПФМ-10 на 10 кВ, б - опорный ТФН-35М на 35 кВ; 1 и 3 - первичная и вторичная обмотки, 2 - фарфоровый изолятор, 4 - сердечник вторичной обмотки, 5 - контактный угольник, 6 - крышка, 7 - кожух, 8 - верхний фланец, 9 - зажимы выводов вторичной обмотки, 10 - якореобразный болт, 11 - крышка, 12 - фарфоровая покрышка, 13 - изоляционное масло, 14 - кольцевые обмотки («восьмеркой»), 15 - полухомут, 16 - масловыпускатель, 17 - цоколь, 18 - коробка вторичных выводов, 19 - кабельная муфта, 20 - маслоуказатель

Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора.

В высоковольтных распределительных устройствах подстанций применяют проходные (рис.5, а) и опорные (рис.5, б) трансформаторы тока.

Электрическая принципиальная схема:

Для питания вторичных устройств используют различные схемы соединения вторичных обмоток трансформаторов тока. Соединение в звезду (рис.6, а) применяют при необходимости контроля тока во всех трех фазах электрической сети, соединение треугольником (рис.6, б) - при получении большей силы тока во вторичной цепи или сдвига по фазе вторичного тока относительно первичного на 30 или 330°.

В сетях с изолированной нейтралью используют соединение вторичных обмоток измерительных трансформаторов тока в неполную звезду (Рисунок 6, в) и на разность токов двух фаз (рис.6, г), а для питания защит от замыкания на землю - схему соединения на сумму токов трех фаз (схема фильтра токов нулевой последовательности). Токовое реле, включенное на выходе цепей, собранных по такой схеме (рис.6, д), не реагирует на междуфазовые короткие замыкания, но приходит в действие при всех видах повреждений, связанных с замыканием элементов электрической сети на землю.

Рис. 6 - Схемы соединений вторичных обмоток трансформаторов тока:

а - звездой, б - треугольником, в - неполной звездой, г - на разность токов двух фаз, д - на сумму токов трех фаз, е - последовательное, ж - параллельное

Последовательное соединение вторичных обмоток трансформаторов тока одной фазы (рис.6, е) позволяет получить от них суммарную мощность, а параллельное (рис. 6, ж) - уменьшить коэффициент трансформации, суммируя ток вторичных обмоток при данном токе в линии.

Нагрузка трансформатора тока - это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.

Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.

Конструкции трансформаторов тока:

По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.

Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.

Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.

Технические характеристики измерительных трансформаторов напряжения:

Номинальные первичное и вторичное напряжение измерительных трансформаторов напряжения;

Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения (обычно 100 В или 100/ ), коэффициента трансформации К=U1ном/U2ном. В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2;0,5; 1:3.

Нагрузка трансформаторов напряжения:

Вторичная нагрузка трансформатора напряжения - это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.

Конструкции трансформаторов напряжения:

В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях - только однофазные. При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ. НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.

Схемы включения трансформаторов напряжения:

В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда - звезда», или трехфазный типа НТМИ. Так же соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ.

Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов соединенных в неполный треугольник.

Трансформаторы напряжения выбирают по условиям Uуст ≤U1ном, S2≤ S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника.

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартного значения 100 или 100/v3 В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения. Схема включения однофазного трансформатора напряжения показана на рис.; первичная обмотка включена на напряжение сети U1, а к вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Для безопасности обслуживания один выход вторичной обмотки заземлен. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

Схема включения трансформатора напряжения:

1 — первичная обмотка; 2 — магнитопровод; 3 — вторичная обмотка

Так же как и в трансформаторах тока, вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 180°. Это определяет угловую погрешность.

В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3. Погрешность зависит от конструкции магнитопровода, магнитной проницаемости стали и от cosφ2, т.е. от вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.

Суммарное потребление обмоток измерительных приборов и реле, подключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.

В зависимости от назначения могут применяться трансформаторы напряжения с различными схемами соединения обмоток. Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора НОМ, НОС, НОЛ, соединенных по схеме открытого треугольника рис., а также трехфазные двухобмоточные трансформаторы НТМК, обмотки которых соединены в звезду (рис. 4.13, б). Для измерения напряжения относительно земли могут применяться три однофазных трансформатора, соединенных по схеме Y0 /Y0, или трехфазные трехобмоточные трансформаторы НТМИ или НАМИ.




<== предыдущая лекция | следующая лекция ==>
Приложения. 15 ноября 1942 год Добрый день! | Методики рейтингования

Дата добавления: 2015-08-12; просмотров: 982. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия