Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

М – последовательности




Среди фазоманипулированных сигналов особое значение занимают сигналы, кодовые последовательности которых являются последовательностями максимальной длины или М -последовательностями.

М – последовательности принадлежат к разряду двоичных линейных рекуррентных последовательностей и представляют собой набор N периодически повторяющихся двоичных символов. Причем каждый текущий символ dj образуется в результате сложения по модулю 2 некоторого числа m предыдущих символов, одни из которых умножаются на 1, а другие – на 0.

Технически генератор М-последовательности строится в виде регистра (последовательно включенных триггеров) с отводами, с цепью обратной связи и с сумматором по модулю 2. Пример такого генератора приведен на рисунке 12. Умножение на а1…аm в (4) означает просто наличие или отсутствие отвода, т.е. связи соответствующего триггера (разряда регистра) с сумматором. В m-разрядном регистре максимальный период равен: Nm – 1. Величина m называется памятью последовательности. Если отводы выбраны произвольно, то не всегда на выходе генератора будет наблюдаться последовательность максимальной длины. Правило выбора отводов, позволяющее получить последовательность с периодом Nm-1, предполагает найти неприводимые примитивные полиномы степени m с коэффициентами, равными 0 и 1. Не равные нулю коэффициенты в полиномах определяют номера отводов в регистре.

Так, при m=6 существует 3 примитивных многочлена:

а6 а5 а4 а3 а2 а1 а0

p1 ( x ) = x 6 + x + 1 1 0 0 0 0 1 1

p2 ( x ) = x 6 + x 5 + x 2 + x + 1 1 1 0 0 1 1 1

p3 ( x ) = x 6 + x 5 + x 3 + x 2 + 1 1 1 0 1 1 0 1

 

На рисунке 12 реализован первый вариант.

 

Рисунок 12 - Генератор М-последовательности с периодом N = 26 – 1 = 63

 

Особенности автокорреляционной функции М-последовательности Наибольший интерес представляет нормированная автокорреляционная функция (АКФ). Различают два случая получения такой функции: в периодическом (ПАКФ) и апериодическом режимах. Периодическая АКФ имеет основной, равный единице, пик и ряд боковых выбросов, амплитуды которых 1/N. С ростом N ПАКФ приближается к идеальной, когда боковые пики становятся по сравнения с основным пренебрежимо малы.

 

Боковые пики АКФ в апериодическом режиме существенно больше боковых пиков ПАКФ. Среднеквадратичное значение боковых пиков (вычисленное через дисперсию) равно

 

1.10 Усеченные М-последовательности

 

Разбивая М-последовательность (полный период N) на сегменты длительности Nс, можно получить большое число ШПС, рассматривая каждый из сегментов как самостоятельный сигнал. Если сегменты не перекрываются, то их число равно n = N/(Nc-1). Таким образом, можно получить большое число псевдослучайных последовательностей. Автокорреляционные свойства таких последовательностей значительно хуже, чем у М-последовательности той же длительности и зависят от Nc. Установленно, что у 90% сегментов uб 3 /, а у 50% - 2 /.







Дата добавления: 2015-08-12; просмотров: 1020. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.015 сек.) русская версия | украинская версия