Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание № 6




 

№ варианта Номера задач

 

 

УТВЕРЖДАЮ

Декан факультета

социологии и управления

_______________доц. Кричинский П.Е.

 

Индивидуальное задание

по производственной практике студента

_______________________________________________

_______________________________________________

 

 

№ п/п Содержание работы Срок выполнения Отметка о выполнении
1 2 3 4
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
1 2 3 4
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

 

 

Руководитель практики: _________________

(подпись)

 

Ознакомлен: ___________________________

(подпись студента)

Индивидуальные задания

Задание № 1

Даны точки А, В, С, Д. Найти:

1) координаты точек, симметричных относительно оси Ох точкам А и В, сделать чертёж;

2) координаты точек, симметричных относительно оси Оу точкам С и Д, сделать чертёж;

3) расстояние между точками А и В, С и Д;

4) середину между точками А и С, В и Д.

 

1.1 А(-4; 7); В(2; 3); С(8; 1); Д(-6; -5);

 

1.2 А(4; 5); В(2; -3); С(-6; 1); Д(-4; -5);

 

1.3 А(8; 3); В(-4; -2); С(-6; 7); Д(-2; -8);

 

1.4 А(3; -2); В(4; 5); С(-7; 8); Д(-8; -3);

 

1.5 А(4; -1); В(-3; 8); С(-6; -5); Д(9; 4);

 

1.6 А(-1; -2); В(3; 4); С(7; -6); Д(-5; 10);

 

1.7 А(5; -3); В(-1; -6); С(9; 2); Д(-7; -4);

 

1.8 А(11; 4); В(-2; 1); С(-9; -6); Д(-4; 5);

 

1.9 А(-8; 3); В(5; -7); С(4; 9); Д(-1; -5);

 

1.10 А(8; 5); В(7; -2); С(-4; -3); Д(-13; 6);

 

1.11 А(-5; 9); В(4; -3); С(-3; -1); Д(2; 7);

 

1.12 А(2; 4); В(-6; 5); С(4; -8); Д(-2; -9);

1.13 А(3; -9); В(-6; -3); С(11; 1); Д(14; -5);

 

1.14 А(15; 3); В(-1; 2); С(-9; -7); Д(5; 6);

 

1.15 А(7; 8); В(-4; 3); С(-9; -4); Д(10; 5);

 

1.16 А(4; -7); В(-1; -6); С(8; 9); Д(5; -4);

 

1.17 А(-4; 2); В(10; -7); С(-2; -8); Д(6; 5);

 

1.18 А(14; 1); В(-8; 15); С(2; 7); Д(-6; -7);

 

1.19 А(4; -9); В(-6; 3); С(-6; -5); Д(8; 1);

 

1.20 А(6; 9); В(-8; 3); С(-4; -7); Д(-6; 5);

 

1.21 А(5; -4); В(7; 8); С(-9; 6); Д(-1; -4);

 

1.22 А(-6; -2); В(3; -4); С(8; 10); Д(-5; -8);

 

1.23 А(12; -3); В(-4; -7); С(-4; 5); Д(8; 3);

 

1.24 А(-3; -5); В(5; -6); С(7; 9); Д(-9; 10);

 

1.25 А(7; -9); В(-1; -3); С(5; 11); Д(-7; 9).

 

 

Задание № 2

Треугольник АВС задан координатами своих вершин.

Найти:

1) уравнение сторон АВ и АС; длину стороны АВ;

2) уравнение и длину высоты СД;

3) уравнение медианы АМ;

4) точку N пересечения медианы АМ и высоты СД;

5) уравнение прямой, проходящей через вершину с параллельно стороне АВ;

6) расстояние от точки В до прямой АС;

7) угол при вершине А;

8) координаты точки Р, расположенной симметрично точке А относительно прямой СД.

 

2.1 А(-6; -4); В(-10; -1); С(6; 1);

 

2.2 А(12; 0); В(18; 8); С(0; 5);

 

2.3 А(-2; 2); В(-6; -3); С(10; -1);

 

2.4 А(8; 2); В(14; 10); С(-4; 7);

 

2.5 А(2; -4); В(-2; -1); С(14; 1);

 

2.6 А(2; -1); В(8; 7); С(0; 4);

 

2.7 А(5; -3); В(1; 0); С(17; 2);

 

2.8 А(14; -6); В(20; 2); С(2; -1);

 

2.9 А(3; 4); В(-1; 7); С(15; 9);

 

2.10 А(1; -2); В(7; 6); С(-11; 3);

 

2.11 А(-8; -3); В(4; -12); С(8; 10);

2.12 А(-5; 7); В(7; -2); С(11; 20);

 

2.13 А(-12; -1); В(0; -10); С(4; 12);

 

2.14 А(-10; 9); В(2; 0); С(6; 22);

 

2.15 А(0; 2); В(12; -7); С(16;15);

 

2.16 А(-9; 6); В(3; -3); С(7; 19);

 

2.17 А(1; 0); В(13; -9); С(17; 13);

 

2.18 А(-4; 10); В(8; 1); С(12; 23);

 

2.19 А(2; 5); В(14; -4); С(18; 18);

 

2.20 А(-1; 4); В(11; -5); С(15; 17);

 

2.21 А(-2; 7); В(10; -2); С(8; 12);

 

2.22 А(-6; 8); В(6; -1); С(4; 13);

 

2.23 А(3; 6); В(15; -3); С(13; 11);

 

2.24 А(-10; 5); В(2; -4); С(0; 10);

 

2.25 А(-4; 12); В(8; 3); С(6; 17).

 

Задание № 3

Найти координаты центра и радиус окружности. Выполнить чертёж.

 

3.1 x2 + y2 – 8x + 12y – 29 = 0.

 

3.2 x2 + y2 + 16x – 20y – 5 = 0.

 

3.3 x2 + y2 – 4x + 4y – 8 = 0.

 

3.4 x2 + y2 + 6x – 4y – 62 = 0.

 

3.5 x2 + y2 + 6x – 14y – 6 = 0.

 

3.6 x2 + y2 – 24x + 2y – 51= 0.

 

3.7 x2 + y2 – 4x + 16y – 5 = 0.

 

3.8 x2 + y2 + 12x – 10y + 45 = 0.

 

3.9 x2 + y2 – 8x + 6y = 0.

 

3.10 x2 + y2 + 12x – 14y + 49 = 0.

 

3.11 x2 + y2 – 18x + 2y – 39 = 0.

 

3.12 x2 + y2 + 8x – 4y – 5 = 0.

 

3.13 x2 + y2 – 6x + 14y – 6 = 0.

 

3.14 x2 + y2 – 4x + 8y – 5 = 0.

 

3.15 x2 + y2 + 8x – 12y – 29 = 0.

 

3.16 x2 + y2 – 16x + 20y – 5 = 0.

 

3.17 x2 + y2 + 4x + 4y – 8 = 0.

 

3.18 x2 + y2 + 24x –2y – 51= 0.

 

3.19 x2 + y2 – 12x + 14y – 15 = 0.

 

3.20 x2 + y2 – 10x + 16y – 11 = 0.

 

3.21 x2 + y2 + 8x – 6y – 24 = 0.

 

3.22 x2 + y2 – 12x + 8y – 29 = 0.

 

3.23 x2 + y2 + 10x – 4y + 13 = 0.

 

3.24 x2 + y2 – 8x + 6y – 24 = 0.

 

3.25 x2 + y2 – 4x + 16y + 67 = 0.

 

 

Задание № 4

Привести уравнение кривой к каноническому виду, указать вершины, найти фокусы и эксцентриситет кривой (для гиперболы найти уравнения асимптот). Построить кривую.

 

 

4.1 а) x2 + y2 – 36 = 0; б) 9x2 – 49y2 – 441 = 0;

 

4.2 а) 9x2 + 16y2 – 144 = 0; б) 25x2 – 81y2 – 225 = 0;

 

4.3 а) 4x2 + 9y2 – 36 = 0; б) 81x2 – 64y2 – 1600 = 0;

 

4.4 а) 16x2 + 25y2 – 400 = 0; б) 100x2 – 9y2 – 900 = 0;

 

4.5 а) 25x2 + 36y2 – 900 = 0; б) 9х2y2 – 81 = 0;

 

4.6 а) 4x2 + 25y2 – 100 = 0; б) 64x2y2 – 64 = 0;

 

4.7 а) 9x2 + 25y2 – 225 = 0; б) 81x2 – 16y2 – 1296 = 0;

 

4.8 а) 4x2 + 9y2 – 144 = 0; б) 25x2 – 16y2 - 400= 0;

 

4.9 а) 25x2 + 49y2 – 1225 = 0; б) 4x2y2 – 36 = 0;

 

4.10 а) 4x2 + 81y2 – 324 = 0; б) 9x2y2 – 36 = 0;

 

4.11 а) 9x2 + 49y2 – 441 = 0; б) 36x2 – 25y2 – 900 = 0;

 

4.12 а) x2 + 16y2 – 64 = 0; б) 25x2 – 9y2 – 225 = 0;

 

4.13 а) 9x2 + 100y2 – 900 = 0; б) 16x2 – 49y2 – 784 = 0;

 

4.14 а) 25x2 + 81y2 – 2025 = 0; б)16x2 – 9y2 – 144 = 0;

 

4.15 а) 4x2 + 49y2 – 196 = 0; б) 4x2y2 – 64 = 0;

 

4.16 а) 9x2 + 64y2 – 576 = 0; б) 25x2 – 4y2 – 400 = 0;

 

4.17 а) 16x2 + 81y2 – 1296 = 0; б) 9x2 – 4y2 - 36= 0;

 

4.18 а) x2 + 25y2 – 100 = 0; б) 81x2 – 4y2 – 324 = 0;

 

4.19 а) 25x2 + 64y2 – 1600 = 0; б) 16x2y2 – 64 = 0;

 

4.20 а) x2 + 9y2 – 36 = 0; б) 49x2 – 25y2 – 1225 = 0;

 

4.21 а) 16x2 + 4y2 – 784 = 0; б) 25x2 – 4y2 – 100 = 0;

 

4.22 а) x2 + 9y2 – 81 = 0; б) 49x2 – 4y2 – 196 = 0;

 

4.23 а) x2 + 4y2 – 64 = 0; б) 64x2 – 9y2 – 576 = 0;

 

4.24 а) 4x2 + 25y2 – 400 = 0; б) 9x2 – 4y2 – 144 = 0;

 

4.25 а) x2 + 100y2 – 25 = 0; б) 81x2 – 25y2 – 2025 = 0.

 

 

Задание № 5

Даны уравнения парабол.

1. Указать ось симметрии.

2. Найти координаты фокуса и написать уравнение директрисы для каждой из парабол.

3. Построить графики заданных парабол.

 

5.1 а) у2 – 16х = 0; б) х2 + 4у = 0;

 

5.2 а) х2 – 9у = 0; б) у2 + 10х = 0;

 

5.3 а) у2 + 4х = 0; б)х2 – 18у = 0;

 

5.4 а) х2 – 12у = 0; б) у2 + 6х = 0;

 

5.5 а) у2 – 14х = 0; б) х2 + 8у = 0;

 

5.6 а) х2 + 10у = 0; б) у2 – 16х = 0;

 

5.7 а) у2 – 6х = 0; б) х2 + 18у = 0;

 

5.8 а) х2 – 2у = 0; б) у2 + 16х = 0;

 

5.9 а) у2 – 10х = 0; б) х2 + 4у = 0;

 

 

5.10 а) х2 – 32у = 0; б) у2 + 12х = 0;

 

5.11 а) у2 – 4х = 0; б) х2 + 16у = 0;

 

5.12 а) у2 – 48х = 0; б) х2 + 8у = 0;

 

5.13 а) х2 – 10у = 0; б) у2 + 6х = 0;

 

5.14 а) у2 – 32х = 0; б) х2 + 6у = 0;

 

5.15 а) х2 – 14у = 0; б) у2 + 12х = 0;

 

5.16 а) у2 – 22х = 0; б) х2 + 18у = 0;

 

5.17 а) х2 – 2у = 0; б) у2 + 6х = 0;

 

5.18 а) у2 – 18х = 0; б) х2 + 34у = 0;

 

5.19 а) у2 – 48х = 0; б) х2 + 28у = 0;

 

5.20 а) у2 – 12х = 0; б) х2 + 20у = 0;

 

5.21 а) х2 – 24у = 0; б) у2 + 8х = 0;

 

5.22 а) у2 – 26х = 0; б) х2 + 12у = 0;

 

5.23 а) у2 – 36х = 0; б) х2 + 44у = 0;

 

5.24 а) х2 + 20у = 0; б) у2 х = 0;

 

5.25 а) у2 – 64х = 0; б) х2 + 5у = 0.

 

Задание № 6

Составить канонические уравнения:

а) эллипса; б) гиперболы; в) параболы

(А, В – точки, лежащие на кривой, F – фокус, а – большая (действительная) полуось, b – малая (мнимая) полуось, e – эксцентриситет, у = ±kx – уравнение асимптот гиперболы, D – директриса кривой, 2с – фокусное расстояние).

 

6.1 а) b = 15, F(-10, 0); б) a = 13, e = 14/13;

в) D: x = -4.

 

6.2 а) b = 2, F(4 , 0); б) a = 7, e = /7;

в) D: x = 5.

 

6.3 a) А(3, 0) B(2, /3) б) k = 3/4, c = 5/4;

в) D: y = -2.

 

6.4 a) e = /5, A(-5, 0); б) A( , 3), B(4 , 3 );

в) D: y = 1.

 

6.5 a) 2a = 22, e = /11; б) k = 2/3, 2c = 10 ;

в) ось , А(27, 9).

 

6.6 а) b = , e = /25; б) k = 3/4, 2a = 16;

в) ось , А(4, -8).

 

6.7 а) а = 4, F = (3, 0); б) b = 2 , F(-11, 0);

в) D: x = -2.

 

6.8 a) b = 4, F = (9, 0); б) a = 5, e = 7/5;

в) D: x = 6.

 

6.9 a) A(0, ), B( /3, 1); б) k = /10, c = 11/10;

в) D: y = -4.

6.10 a) e = 7/8, A(8, 0); б) A(3, - /5), B( /5, 6); в) D: y = 4.

 

6.11 a) 2a = 24, e = /6; б) k = /3, 2c = 10;

в) ось , А(-7, -7).

 

6.12 а) b = 2, e = 5 /29; б) k = 12/13, 2a = 26;

в) ось , А(-5, 15).

 

6.13 а) а = 6, F(-4, 0); б) b = 3, F(7, 0);

в) D: x = -7.

 

6.14 a) b = 7, F(5, 0); б) а = 11, e = 12/11;

в) D: x = 10.

 

6.15 a) A(-Ö17/3, 1/3), B( /2, 1/2); б) k = 1/2, e = Ö5/2;

в) D: y = 1.

 

6.16 a) e = 3/5, A(0, 8); б) А(Ö6, 0), В(-2 , 1);

в) D: y = 9.

 

6.17 a) 2a = 22, e = 10/11; б) k = Ö11/5, 2c = 12;

в) ось , А(-7, 5).

 

6.18 а) b = 5, e = 12/13; б) k = 1/3, 2a = 6;

в) ось , А(-9, 6).

 

6.19 а) а = 9, F(7, 0); б) b = 6, F(12, 0);

в) D: x = -1/4.

 

6.20 a) b = 5, F(-10, 0); б) a = 9, e = 4/3;

в) D: x = 12.

 

6.21 a) A(0, -2), F( /2, 1); б) k = 2 /9, e = 11/9;

в) D: y =5.

 

6.22 a) e = 2/3, A(-6, 0); б) А( , 0), B( /3, 2);

в) D: y = 1.

 

6.23 a) 2a = 50, e = 3/5; б) k = /14, 2c = 30;

в) ось , А(4, 1).

 

6.24 а) b = 2 , e = 7/8; б) k = 5/6, 2a = 12;

в) ось , А(-2, 3 ).

 

6.25 а) а = 13, F(-5, 0); б) b = 44, F(-7, 0);

в) D: x = -3/8.

 

 







Дата добавления: 2015-10-01; просмотров: 1165. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.027 сек.) русская версия | украинская версия