Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УРАВНИВАНИЕ ГЕОДЕЗИЧЕСКИХ СЕТЕЙ СГУЩЕНИЯ, ПОСТРОЕННЫХ МЕТОДОМ ТРИАНГУЛЯЦИИ




9.1 Цель и содержание предварительных вычислений в триангуляции

9.2 Цель и содержание уравнительных вычислений в триангуляции

9.3 Виды условных уравнений.

Цель и содержание предварительных вычислений в триангуляции

 

Вычисления в триангуляции являются заключительной частью работ по построению геодезической сети. Вычисления подразделяются на предварительные и уравнительные (окончательные).

Целью предварительных вычислений в триангуляции является:

1 определение качества полевых измерений;

2 соответствие их требованиям действующих инструкций;

3 подготовка результатов измерений для дальнейшей обработки, а именно уравнивания и получения координат пунктов, длин сторон и дирекционных углов.

Содержание и последовательность предварительных вычислений следующая:

1 Проверка журналов полевых измерений и их оформление;

2 Проверка центрировочных листов и их оформление;

3 Вывод средних значений направлений на каждом пункте и оценка точности угловых измерений, которая производится по формуле:

(149)

где m - СКП направления, измеренного одним приемом; К – коррелата;

V – уклонения направлений из отдельных приемов от среднего значения; n – число направлений.

СКП направления, измеренного Р приемами вычисляют по формуле:

(150)

4 Составление рабочей схемы.

Исходные пункты наносят по координатам, а остальные пункты засечками по измеренным углам транспортиром. На схеме показывают исходную сторону двойной линией, название пунктов, нумеруют углы и треугольники.

5 Приближенное решение треугольников и вычисление длин сторон с точностью до 1 м.

Вычисление сторон начинается от исходной стороны триангуляции по теореме синусов (рисунок 27):

(151)

Приняв сторону b за исходную, находят другие стороны по формулам:

с = q sin C a = q sin A (152)

6 Вычисление поправок в измеренные направления за центрировку и редукцию по формулам:

(153)

(154)

7 Измеренные направления приводят к центрам пунктов.

Поправки за центрировку в измеренные на пункте направления берут из вычислений на данном пункте, а поправку за редукцию – из вычислений на наблюдаемых с него пунктах.

8 По направлениям, приведенным к центрам пунктов, вычисляют углы и в каждом треугольнике подсчитывают невязки

w = å b - 180°(155)

По навязкам в треугольниках подсчитывают СКП измерения углов в данной сети mb по формуле:

(156)

где n – число треугольников в сети.

 

9.2 Цель и содержание уравнительных вычислений в триангуляции

 

Конечной целью построения триангуляции является определение координат её пунктов, длин сторон и дирекционных углов. Эта задача может быть выполнена при наличии двух измеренных элементов в каждом треугольнике сети и необходимого числа исходных данных, т.е. координат хотя бы одного пункта сети и дирекционного угла и длины стороны на другой пункт или координат двух пунктов. В этом случае координаты получаются бесконтрольно. Для контроля, повышения точности определения элементов сети и оценки точности измеренных величин обычно измеряют больше элементов, чем это необходимо, т.е. производят избыточные измерения.

Каждое избыточное измерение вместе с необходимыми образует математическую зависимость – условие. Например, сумма измеренных углов в треугольнике минус 180°есть невязка w.

1 + 2 + 3 - 180° = w (157)

Наличие невязок вносит неопределенность в результаты вычислений искомых величин. Поэтому, прежде чем получить окончательные значения координат пунктов, необходимо устранить все возникающие в сети невязки за те или иные условия путем введения поправок V в измеренные углы, при которых соблюдалось бы равенство:

V1 + V2 + V3 + w = 0(158)

В данном уравнении три неизвестных. Чтобы однозначно его решить, необходимо ввести дополнительное условие. Таким условием является, чтобы сумма квадратов поправок была минимальной, т.е. [V2] = min.

Таким образом, чтобы произвести уравнивание, необходимо:

- подсчитать вид и число условий, возникающих в данной сети;

- за каждое условие вычислить невязки и допустимую их величину;

- вычислить поправки под условием [V2] = min;

- ввести эти поправки в измеренные углы и получить уравненные углы;

- по уравненным углам вычислить дирекционные углы, длины сторон сети и координаты всех пунктов;

- произвести оценку точности уравненных величин.







Дата добавления: 2015-10-01; просмотров: 439. Нарушение авторских прав

codlug.info - Студопедия - 2014-2017 год . (0.005 сек.) русская версия | украинская версия